

KON-RBL(Y) 一体式钢筋扫描仪

北京市康科瑞工程检测技术有限责任公司 地址:北京市大兴区西红门镇宏旭路1号院四层4001 电话:010-68317925 网址:www.koncrete.net 邮箱:koncrete@263.net

北京市康科瑞工程检测技术有限责任公司

BEIJING KONCRETE ENGINEERING TESTING TECHNOLOGY CO., LTD

第	一章仪器概述1
1.	1 主要功能1
1.	2 规范支持1
1.	3 技术特点1
1.	4 技术指标2
1.	5 注意事项4
第	5二章仪器操作说明5
2.	1 仪器构成5
	2.1.1 键盘5
	2.1.2 指示灯
	2.1.3 激光指示管6
	2.1.4 测距轮7
	2.1.5 挂件口7
	2.1.6 手柄
	2.1.7 TF 卡
	2.1.8 USB □
	2.1.9 蜂鸣器7
2.	2 主菜单
2.	3 钢筋扫描

2.3.1 扫描参数设置	9
2.3.2 JGJ 扫描	
2.3.3 精细扫描	
2.3.4 剖面扫描	14
2.3.5 网格扫描	
2.3.6 图像扫描	
2.4 数据管理	189
2.5 系统设置	20
2.5.1 系统修正	21
2.5.2 时间设置	21
2.5.3 显示设置	
2.5.4 方向设置	
2.5.5版本信息	23
2.6 关机	23
签二音粉促化验	24
乐二早 数佑传刊······	
第四章机外数据分析软件	25
4.1 安装分析软件	25
4.2 文件的打开与保存	27
4.3 显示方式	
4.3.1 平面显示	
4.3.2 立体显示	
4.3.3 波形显示	
······································	

第一章仪器概述

1.1 主要功能

KON-RBL(Y)一体式钢筋扫描仪基于多线圈电磁感应技术, 针对混凝土内部的铁磁性物体如钢筋的特征参数进行探测,可以 扫描钢筋位置、走向及分布情况,测试钢筋的保护层厚度,估测 钢筋直径,也可对非铁磁性介质中的铁磁性目标体的位置、走向 及分布情况进行探测。

1.2 规范支持

GB 50204-2015《混凝土结构工程施工质量验收规范》

GB 50010-2010《混凝土结构设计规范》

GB/T50344-2004《建筑结构检测技术标准》

JJF 1224-2009 钢筋保护层、楼板厚度测量仪校准规范

JGJ/T152-2008《混凝土中钢筋检测技术规程》

DB11/T365-2006《电磁感应法检测钢筋保护层厚度和钢筋直 径技术规程》

1.3 技术特点

 采用多线圈组合技术和高分辨率光电敏感元件,钢筋位置的 定位更精准;

- 采用声音、瞄准框、指示灯和激光管等多种方式提示钢筋的 位置更直观;
- 采用 32 位高速 ARM 处理器,测试分析更快速;
- 采用 24 位 A/D 转换器,测试**精度更高**;
- 采用滚轮和按键组合操作方式,操作更简便;
- 内置陀螺仪,可以自动识别探头的扫描方向;
- 多种测试模式,集成多种测试规范,适应不同的测试场合;
- 图像扫描模式,可以立体再现结构内部的钢筋分布;
- 多种修正功能(箍筋、密集筋、综合修正),满足测试精度 的要求;
- 灵活的数据结构设计,支持构件续测;
- 屏幕采用高分辨率彩屏(400X240),显示的信息更丰富;
- 内置可更换大容量锂电池,大大延长了仪器的续航时间。

1.4 技术指标

项目	性能指标
直径估测适用范围	$\Phi 6$ — $\Phi 50$ mm
直径估测最大允许误差	±1个规格
直径估测显示精度	0. 1mm
供电方式	内置锂电池
连续工作时间	15 小时
主机尺寸	216mm $ imes$ 110mm $ imes$ 91mm
主机重量	550g

表 1-1 性能指标

量程 钢筋直径: mm	小量程	大量程
6	1-75	1-107
8	1-75	1-108
10	1-85	1-112
12	1-90	1-118
14	1-90	1-128
16	1-94	1-130
18	1-98	1-137
20	1-98	1-140
22	1-100	1-142
25	1-100	1-144
28	1-100	1-156
32	1-103	1-164
36	1-103	1-164
40	1-105	1-182
50	1-110	1-200

表 1-2 钢筋保护层厚度测量范围

表 1-3 保护层厚度测量误差

量程 测量误差: mm	小量程	大量程
± 1	1 - 59	1-79
± 2	60-89	80-119
± 4	90-110	120-200

表 1-4 功能指标

扫描方	JGJ	精细	剖面	网格	图像	三维	数据	激光
向切换	扫描	扫描	扫描	扫描	扫描	成像	修正	定位
自动/手动	有	有	有	有	有	有	有	有

1.5 注意事项

- 使用专用充电器对本仪器进行充电,一般情况下,不超 过 2.5 小时即可充满。
- 更换电池必须使用专用锂电池,严禁私自更换非厂家指 定规格的电池。
- 工作环境要求: 环境温度: 0-+40℃ 相对湿度: <90%RH。
- 4. 避免阳光长时间直射。
- 5. 工作时避免靠近非常强的磁场,如大型电磁铁、大型变 压器等。
- 6. 避免进水。
- 7. 请勿私自打开仪器机壳。

第二章仪器操作说明

2.1 仪器构成

KON-RBL(Y)一体式钢筋扫描仪由主机、充电器、USB 线和其他配件组成。主机外观如图 2-1 所示。

2.1.1 键盘

键盘有"返回(☉)"键,"滚轮"和"确定"键,功能见表 2-1 所示。

按键	操作方式	功能描述
	长按	该键实现开关机的功能
返回(〇)键	短按	该键实现返回上一界面
		取消操作的功能
		实现确认当前操作的功能
确定键	按下	钢筋扫描界面进行直径估测
		进入焦点所指示选项
	滚动	改变焦点的位置
滚轮		改变参数值
		浏览测点
确定键+滚轮	滚动	快速浏览测点
· 添松 (由 碑)	按下	调出中键菜单
依北 (T 健)	1 21	改变光标所在的位置

表 2-1 按键功能一览

2.1.2 指示灯

充电时指示灯为红色,充满时变为绿色。 当仪器扫过钢筋正上方时,指示灯为红色;当仪器处于相邻的两 根钢筋中间时,指示灯为蓝色。

2.1.3 激光指示管

当主机扫过钢筋正上方时,激光指示管点亮,指示钢筋的走向。

2.1.4 测距轮

测距轮测量仪器扫描过的距离。

2.1.5 挂件口

挂件口挂接腕带(或挂绳)。

2.1.6 手柄

手柄可以打开,可更换电池。建议更换厂家指定规格的电池,并 注意极性,切勿反接,否则会损坏仪器和电池。

2.1.7 TF 卡

仪器标配大容量 TF 卡。

2.1.8 USB 口

通过 USB 口跟电脑连接,可以传输数据。

2.1.9 蜂鸣器

开机时,蜂鸣器发出"嘀"的声音。

当主机扫过钢筋正上方时,蜂鸣器发出"嘀"的声音。 当主机存储空间不足时,蜂鸣器发出"嘀"的声音,屏幕上并有 报警窗口。

当主机电量不足 10%时,蜂鸣器发出一个"嘀……"的长声,电量不足 5%时,蜂鸣器发出连续的"嘀…嘀…"的声音。

2.2 主菜单

长按"返回(O)"键开机,仪器开机后的第一个界面是主 菜单界面,如图 2-2 所示。

7

图 2-2 主菜单

滚动"滚轮"切换焦点框,选择不同的功能,按"确定"键 进入相应的功能模块。

右上角是电池的电量显示。

2.3 钢筋扫描

在主菜单,当焦点框位于钢筋扫描时,按"确定"键进入钢筋扫描界面,如图 2-3 所示。

图 2-3 钢筋扫描界面

在钢筋扫描界面,滚动"滚轮"切换不同的钢筋扫描模式, 按下"确定"键进入相应的扫描参数设置界面,按"返回"键返 回主菜单(图 2-2)。

2.3.1 扫描参数设置

在参数设置界面下,按"返回"键返回钢筋扫描界面(如图 2-3),按下"滚轮中键"切换光标至不同的参数,滚动"滚轮" 修改参数值,按"确定"键保存参数设置进入相应的钢筋扫描界

面。以 JGJ 扫描参数设置为例进行说明, 如图 2-4 所示。

	钢筋扫描	-
JGJ 扫描	构件状态:新建	光标
精细扫描	构件名称:002	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
剖面扫描	设计直径:◎22 设计原度:20	
网格扫描	构件类型:梁、柱	
图像扫描	扫描依据: JGJ/T 152	

图 2-4 JGJ 扫描参数设置

1. 构件状态

构件状态有新建和续测两种状态。

2. 构件名称

构件状态选"新建"时,构件名称默认加 1。也可逐位修改。 每位可设置 0-9 十个数字和 A-Z 等 26 个字母,允许重名。

构件状态选"续测"时,构件名只能在已测构件中选择。

3. 设计直径

设置直径可设为 6, 8, 10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40, 50mm 等。

在网格扫描和图像扫描参数中需分别设置水平方向(X向) 和竖直方向(Y向)的设计直径。

4. 设计厚度

设置厚度值的范围为 10-200mm,在网格扫描和图像扫描参数中需分别设置水平方向(X向)和竖直方向(Y向)的设计厚度值。

5. 构件类型

构件类型设为"板,墙"和"梁,柱"两种。

6. 扫描依据(仅 JGJ 扫描模式有此选项)

扫描依据内置"JGJ/T152-2008 混凝土中钢筋检测技术规程" 和"DB11/T365-2006 电磁感应法检测钢筋保护层厚度和钢筋直径 技术规程"两种规程和"单点扫描"模式。机内软件会根据构件 类型和相应扫描依据对钢筋保护层厚度是否合格进行自动判定。

2.3.2 JGJ 扫描

JGJ 扫描是按照相关规范进行扫描和数据合格判定的钢筋 扫描模式,符合"JGJ/T152-2008 混凝土中钢筋检测技术规程"和 "DB11/T365-2006 电磁感应法检测钢筋保护层厚度和钢筋直径 技术规程"两种规程,也可进行简单的单点扫描。

扫描依据选择"单点扫描"进入图 2-5(a)所示界面,选择 "DB11/T365"进入图 2-5(b)所示界面,选择"JGJ/T152"进 入图 2-5(c)所示界面。默认设置是小量程和自动存储模式。显 示当前测点的钢筋保护层厚度、已存测点数、合格率等信息。同 时 用 瞄 准 框 表 示 主 机 与 被 测 钢 筋 的 相 互 位 置 关 系。

(a) 单点扫描界面(b) DB11 扫描界面

(c)JGJ 扫描界面

图 2-5 JGJ 扫描界面

主机默认的扫描方向是向右扫描。当主机没有探测到钢筋信号或 者信号极其微弱时,瞄准框在中心位置并呈灰色显示。随着主机 向右移动,当接近钢筋并探测到钢筋信号时,瞄准框由灰色变为 黑色,瞄准框先远离中心线向右侧边缘移动,随着探测线圈的信 号变化,然后再从右侧边缘向中心线移动,当瞄准框再次与中心 线区域重合,变为红色,这时主机在钢筋的正上方,红色指示灯 亮起,激光指示管亮起,蜂鸣器发出"嘀"的响声。判断的钢筋 保护层厚度值将会显示在屏幕上。

随着主机从钢筋正上方远离继续向右移动,瞄准框向左侧边 缘移动,随着探测线圈的信号变化,瞄准框从左侧边缘向中心线 移动,当瞄准框再次与中心线区域重合,并变为蓝色,这时主机 在相邻的两根钢筋正中间,蓝色指示灯亮起,此处位置适合钻孔 取芯。

自动存储模式下,每复测一次,当前判出的钢筋保护层厚度 值都会自动确认,显示在测试过程中间值中,当达到复测的次数 时,才会在屏幕左下方显示最终的该测点保护层厚度值,并自动 存储,测点数加1。

JGJ 扫描模式下,可进行的按键操作有:按"返回"键返回 至钢筋扫描界面(图 2-3 所示),按"确定"键实现钢筋的直径 估测功能,如图 2-6 所示。按"滚轮中键"出现中键功能菜单, 如图 2-7 所示。

图 2-6 直径估测界面

注意: 直径估测必须在钢筋正上方测试才能保证测试精度。 直径估测结果得出后停留一段时间,或者继续测试时,自动退出 直径估测状态。

在中键功能菜单中,有数据浏览、量程切换、复位校准、存储方式四个选项,红色选项为当前焦点所选的选项,滚动"滚轮" 切换选项,按"确定"键执行相应操作,按"返回"键退出中键菜单。

图 2-7 滚轮中键菜单

1. 数据浏览

数据浏览界面如图 2-8 所示,通过滚动"滚轮"可以对当前构件 已测的测点进行浏览,按下"滚轮中键"可以删除测点。按"返 回"键返回至 JGJ 扫描界面。

图 2-8 数据浏览

2. 量程切换

量程切换实现大小两个量程的切换,建议使用大量程进行测试, 以保证更高的测试精度。

3. 复位校准

当发现测试误差较大时,可以使用复位校准功能。复位时必须将主机置于远离电磁体或金属体的环境下,按"确定"键开始 复位,当"复位中"字样消失时,复位校准操作完成,界面如图 2-9所示。

4. 存储方式

存储方式默认为自动,可以设置为手动存储模式,手动存储模式 下,当前测点的钢筋保护层厚度值需要按"确定"键进行确认, 才能进入测试过程值,最后一次确认后,同时得出该测点的保护 层厚度判定值并存储。手动测试模式下,如要测试钢筋直径,只 有当前结果值已经确认后,才能按"确定"键进行钢筋直径估测。

2.3.3 精细扫描

精细扫描模式是使用波形图的方式显示被测钢筋的位置、实测保 护层厚度和钢筋间距等信息的扫描方式。适用于密集筋测试。如 图 2-10 所示。

图 2-10 精细扫描

瞄准框的显示原理同 JGJ 扫描。随着仪器向右扫描,左上方实时 显示仪器的当前位移值,波形区显示被测钢筋的信号波形,根据 信号波形的变化规律,判断待测钢筋的位置和保护层厚度,同时 显示相邻钢筋的间距。一般情况下,波形的波峰处对应有钢筋, 当由于钢筋过于密集时,可以在数据浏览功能中进行手动判读。

可进行的按键操作有:按"返回"键返回至钢筋扫描界面, 按"确定"键实现钢筋的直径估测功能。按"滚轮中键"出现功 能菜单,在中键功能菜单中,有数据浏览、量程切换、复位校准、 三个选项,量程切换与复位校准同上节,略。数据浏览界面如图 2-11 所示。

图 2-11 精细扫描测点浏览

在数据浏览界面,按"返回"键可返回至精细扫描界面,滚动"滚轮"可以移动当前位置,小三角标表示当前位置,左上角 实时更新当前位置的位移信息,在没判读钢筋的位置,三角标为 蓝色,此时按滚轮中键,可以添加钢筋测点,三角标变为红色。 在滚动"滚轮"改变当前位置的时候,同时按下确定键,可以快 速浏览数据。

在已判出钢筋的位置,三角标变为红色,此时按下"滚轮中 键"可以删除钢筋测点,删除测点后,三角标变为蓝色。

2.3.4 剖面扫描

剖面扫描是使用剖面分布图的方式显示被测钢筋的位置、设 计保护层厚度、实测保护层厚度和钢筋间距等信息的扫描方式, 如图 2-12 所示。

瞄准框的显示原理同 JGJ 扫描。随着仪器向右扫描,坐标上 方的小车标志(代表仪器探头)会实时显示仪器的当前位置,左 上方实时显示仪器的当前位移值,当判读出钢筋的位置和保护层 厚度后,会在相应位置绘制钢筋剖面点,并注明保护层厚度值和 相邻钢筋之间的间距。

剖面扫描模式下,可进行的按键操作有:按"返回"键返回至钢筋扫描界面,按"确定"键实现钢筋的直径估测功能。按"滚轮中键"出现中键功能菜单,在中键功能菜单中,有数据浏览、 量程切换、复位校准三个选项,操作方法同前节,量程切换与复 位校准,略。

测点浏览如图 2-13 所示, "返回"键退出测点浏览模式, 滚动"滚轮",蓝色三角标随之移动,位移信息实时更新,当蓝 色标变为红色时,表示移到已判钢筋测点的位置,此时按"中键", 可以删除测点。在滚动"滚轮"改变当前位置的时候,同时按下 确定键,可以快速浏览数据。

图 2-13 剖面测点浏览界面

2.3.5 网格扫描

网格扫描是以二维网格示意图的形式显示被测构件中网状 钢筋的位置分布、保护层厚度、相邻间距的扫描模式,该扫描模 式下,估测钢筋直径的方法同上,瞄准框的显示原理同 JGJ 扫描。 界面如图 2-14 所示。

图 2-14 网格扫描

网格扫描模式下,坐标轴的水平方向始终代表主机的移动方向。先扫描 X 方向,随着主机的移动,屏幕上的小车标志实时显示当前仪器探头位置,左上方显示当前位置的位移,当判断出钢筋后,在屏幕上的相应位置画一条钢筋线,同时在钢筋线的端部显示钢筋的保护层厚度,并显示与相邻钢筋的间距。

如果陀螺仪在系统设置中状态为"开",当扫描 Y 方向时, 坐标轴的水平方向会自动切换为 Y 向,如图 2-15 所示,操作方 法同 X 方向。也可以通过中键菜单对扫描方向进行手动设置。

图 2-15 Y 方向扫描

网格扫描模式下,可进行的按键操作有:按"返回"键返回 至钢筋扫描界面,按"确定"键实现钢筋的直径估测功能。按"滚 轮中键"出现中键功能菜单,如图 2-16 所示。

图 2-16 中键菜单

中键菜单有数据浏览、量程切换、复位校准、方向 X 向、方 向 Y 向等选项。量程切换和复位校准同前节,略。

测点数据浏览界面如图 2-17 所示,三角标代表当前位置, 滚动"滚轮"改变当前位置,移动到所判出的钢筋上,按"中键" 可以删除测点,也可改变当前的坐标方向,浏览另一个方向上的 测点数据。在滚动"滚轮"改变当前位置的时候,同时按下确定 键,可以快速浏览数据。

图 2-17 网格扫描测点浏览

方向 X 向或 Y 向选项可以改变当前坐标的水平方向为 X 向或 Y 向,即手动切换扫描方向。

2.3.6 图像扫描

图像扫描模式适合钢筋分布不规则的扫描环境,通过多次扫描 X 向和 Y 向,每次扫描均以波形图的方式显示当前测线下被测钢筋的位置、实测保护层厚度和钢筋间距等信息。将多次扫描得到的数据传到机外数据分析处理软件,可以得到所扫描区域的三

维钢筋分布图。图像扫描模式界面如图 2-18 所示。

图 2-18 图像扫描

右侧是扫描区域示意图,将扫描区域均匀分成5X5的分布图, 每条测线最长1米。滚动"滚轮"选择不同的测线,按下"滚轮 中键"调出中键功能菜单,如图2-19所示,有数据浏览,量程 切换,复位校准,方向X向,方向Y向等五个选项,中键菜单的 使用方法同前节,略。通过"方向X向","方向Y向"可以切 换水平方向所代表的坐标方向。每条测线的扫描方式同精细扫描 方法。

图 2-19 图像扫描中键功能菜单

在数据浏览功能界面,按下"滚轮中键",可以改变浏览测点的 坐标方向,其中增删测点的使用方法同精细扫描的数据浏览功能, 略。

2.4 数据管理

数据管理界面如图 2-20 所示。左侧是数据类型,中间是构

件区,右侧是所选构件的构件信息区,显示构件的测试时间,测试距离,文件名以及测点数据的统计信息等。

图 2-20 数据管理界面

在数据管理界面,滚动"滚轮"可以切换不同扫描模式的数据,按"返回"键返回主界面,按下"滚轮中键"调出中键菜单,如图 2-21 所示,按"确定"键进入相应扫描模式的构件管理界面,如图 2-22 所示。

	数据管理	-
JGJ 扫描	构件 枕	1件信息
精细扫描	清陈不奕	017/6/22 15:19
刘而扫描	删除当前	
	全部清除	JUS 1002 - PEB
网络扫描		0
图像扫描	3/3 合格率:	0%

图 2-21 中键菜单

数据	管理 💻
构件 001 002 003	构件信息
	数据 构件 001 002 003

图 2-22 构件管理

在中键菜单,按"返回"键返回上一界面,按"确定"键执 行清除本类数据,删除当前数据或者清除全部数据,在删除数据 前会有友好提示,如图 2-23,按"返回"键取消删除操作,按"确 定"键执行删除操作。

图 2-23 数据删除界面

在构件管理界面,按"返回"键返回数据管理界面,上下滚动"滚轮",可以切换不同的构件,按下"滚轮"中键可调出中键菜单,同数据管理界面的中键菜单(如图 2-21 所示),按下"确定"键,可进入所选中的构件的测点数据浏览界面,操作同钢筋扫描各功能模块下的测点数据浏览功能,而唯一不同之处是,此处按"返回键"返回的是构件管理界面。

2.5 系统设置

系统设置界面如图 2-24 所示,包含系统修正,时间设置, 显示设置,方向设置和版本信息等功能。按键操作:上下滚动"滚 轮"可以切换不同的功能,按"确定"键进入相应的功能设置界 面,按"返回"键返回主界面。

图 2-24 系统设置

2.5.1 系统修正

在系统设置界面,滚动"滚轮"选中"系统修正",按"确定" 键进入系统修正界面,如图 2-25 所示。

	系统设置	
系统修正	箍筋间距:40	
时间设置	家生物語・本	
显示设置	信 <u>会</u> 修正 · •	
方向设置	≈# ⊟ I≥IT • •1	
版本信息		

图 2-25 系统修正界面

按"滚轮中键"改变光标的位置,滚动"滚轮"修改参数值, 按"确定"键或"返回"键确认参数的修改,退回至系统设置界 面(如图 2-24)。

"箍筋间距"默认值是">120mm",即不需要修正,但是 当箍筋间距小于或等于120mm时应设置箍筋间距,"箍筋间距" 分为40,60,80,100,120,>120六个档位,当设置了箍筋间距(除 >120外)后,在测试时,必须使"探头中心标志"对准一根箍 筋的正上方,这样可以最大程度的减小测试误差。

"密集钢筋"有"是"和"否"两个值,默认选"否",如 选择"是"时,测试时探头移动的速度要尽量缓慢,否则会漏筋。 这个功能仅对精细扫描和图像扫描模式有效。

"综合修正"功能适用于现场扫描环境电磁干扰因素较多或 存在其他不明影响因素时,对仪器的测试结果进行综合修正。

2.5.2 时间设置

时间设置界面如图 2-26 所示。时间设置界面包含"日期" "时间"和"自动关机"的设置,"自动关机"是设置无操作时 自动关机的时间以节省电量。

按"滚轮中键"改变光标的位置,滚动"滚轮"修改参数值, 按"确定"键或"返回"键确认参数的修改,退回至系统设置界 面(如图 2-24)。

21

图 2-26 时间设置界面

2.5.3 显示设置

显示设置界面,如图 2-27 所示,包含"背光亮度"和"系统配色"两个功能的设置,根据环境光线设置合适的背光亮度和系统界面配色。

按"滚轮中键"切换光标的位置,滚动"滚轮"修改参数值, 按"确定"键或"返回"键确认参数的修改,退回至系统设置界 面(如图 2-24)。

图 2-27 显示设置界面

2.5.4 方向设置

在系统设置界面,滚动"滚轮"选中"方向设置",右边显示陀螺仪的状态。按下"确定"键,进入方向设置界面,如图 2-28 所示,滚动"滚轮"改变选项,按下"确定"键使选项生效,"返回"键放弃设置返回系统设置界面。"方向 X 向"和"方向 Y 向"可定义当前坐标轴的方向,"控制开关"用于打开或关闭陀螺仪。

图 2-28 方向设置界面

2.5.5版本信息

版本信息界面显示软件的版本信息,生产厂家的联系方式、网址 和厂家名称,如图 2-29 所示。

图 2-29 产品版本信息

2.6 关机

在主菜单选择"关机",按"确定"或"滚轮中键"可以关 机,所有界面长按"返回(O)"键也可以关机。

第三章 数据传输

在仪器的主菜单,插上 USB 线,将主机与 PC 机相连,稍后会出现如图 3-1 所示的界面。在 PC 机上将会将仪器识别成一个 USB 盘,在资源管理器中打开 U 盘,如图 3-2 所示,在数据文件夹下,存有仪器上的全部测试数据,拷贝至 PC 机即可。

图 3-1 数据传输状态

年(F) 県地(E) 登船(V) 工具(() RED((H)					
約 • 共享 • 刻录	新建文件英					
 ■ 面片 ○ 文括 ○ 送信下載 → 首乐 ■ 供厳影化年 		KAKETONE KAKETONE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E\$156	网络白猫	
₩ 17部3) ▲ win7 (C;) (□ tools (D;)	1					
 work (E) doc (F) 本地研修 (G) 						
급 CD 驱动器 (l) 급 work1 (/t)						
(明虹2 (K:)						

图 3-2 数据拷贝

第四章 机外数据分析软件

4.1 安装分析软件

打开或双击安装文件,按照安装程序的提示完成安装,如图 4-1 所示。

图 4-1 安装界面

安装完成后在桌面与开始菜单有快捷方式。 打开分析软件,如图 4-2 所示。、

图 4-2 分析软件界面

分析软件主要有四部分:功能区、数据列表、数据显示区、 属性栏。功能区包含所有的功能操作按钮;数据列表显示打开的 数据文件及每个文件包含的构件列表,可以根据测试方式来快速 选择所需要的数据构件;数据显示区就是以图形化方式显示当前 构件的数据;属性栏根据数据列表的状态显示,当未选择数据文件或构件时显示文件列表,当选择数据文件时则显示当前文件的构件列表,当选择构件时则显示当前构件的工程信息与统计信息、以及具体的数据,可修改工程信息与钢筋的保护层厚度。

功能区,相当于大图标的工具栏,如下图 4-3 所示。

图 4-3 功能区

窗口栏如下图 4-4 所示。选中则显示相应窗口,未选中则隐 藏窗口。除功能区与状态栏不能移动外,其化窗口均可以自由移 动、贴靠、组合新的窗口布局,下一次打开软件则会延续上一次 的窗口布局。

图 4-4 窗口栏

快捷访问工具栏,如图 4-5 所示,可点击右边的三角形来定制,相当于小图标的工具栏。

图 4-5 快捷访问工具栏

界面样式可切换,如下图 4-6 所示。

		样式 → 亡
	•	Office 2007 (蓝色样式)(B)
		Office 2007 (黑色样式)(L)
		Office 2007 (银色样式)(S)
		Office 2007 (水绿色样式)(A)
_		Windows 7(D)
	_	

图 4-6 界面样式

4.2 文件的打开与保存

可以点击功能区的打开按钮来选择一个或多个钢筋数据文件。如图 4-7 所示。

图 4-7 打开文件

当运行过一次分析软件后,会自动把三种钢筋数据文件(后 缀名分别为 REB, RBL, A6P)关联到分析软件。如果操作系统是 Windows Vista 以上版本的话,则需要以管理员权限来运行一次 分析才能关联数据文件。

文件关联后,可以在保存数据的目录中双击钢筋数据文件来 打开数据,或者选择一个或多个数据文件然后右键选择打开,如 图 4-8 所示。

图 4-8 右键打开文件

另外可以从最近打开过的钢筋数据文件列表中选取想要打 开的文件,如图 4-9 所示。

 ○ 打开 ○ 天雨 	最近打开过的段防数据交件 1一体码影响合数据.a6p	天立体量示 波形量元	关于程序 通出程序 原料功
 新存为 生成图片 ・ ・			500
₩ 18曲 ■ 厚度道			
100 · · · · · · · · · · · · · · · · · ·			
し通出程序		() 通出(1)	

图 4-9 最近打开的文件

关闭文件功能,一次只能关闭一个数据文件。在数据列表中 选中相应的数据文件名或构件可以关闭这个文件的所有构件。

由于一体式钢筋扫描仪新的特性续测功能的需求,每个构件 都需要单独保存到一个文件。所以最好是现场测试完后首先把数 据备份好,然后打开所有测试的数据,剔除无效的构件,再把所 有构件保存到一个综合数据文件里面。如图 4-10 所示。

图 4-10 保存综合文件

如果需要数据显示区的图形另作他用的话,可以选择功能区的生成图片按钮,如图 4-11 所示。推荐第三方的截图软件,更方便快捷,比如腾迅的 QQ,无冲突时默认的热键是 Ctrl+Alt+A。

图 4-11 生成图片

更新评定的允许偏差,选择功能区的评定弹出对话框来选择 不同类型的构件的规则,如图 4-12 所示。当在数据列表未选中 数据文件与构件时,将会对所有数据文件的所有构件做出修改; 当在数据列表选中数据文件时,将会对当前文件下的所有构件做 出修改;当在数据列表选中构件时,将只对当前构件做出修改。

的构件的	词评定规则!	
10.01.0.00		
构件类型:	允许ト編差 (mm)	允许上偁差(mn
3,9,7,0%.	-5	8
○現浇墙:	-5	8
○現演梁:	-7	10
○現浇柱:	-5	8
○预制板:	-5	5
○预制墙:	-5	5
○预制梁:	-7	10
○預制柱:	-5	5
○预制桁架:	-5	5
○其他:	-5	5
依据JGJ/T152-2	1008	

图 4-12 评定规则

生成报告功能,将会对打开的所有构件进行统计计算。软件 自动生成工程概况与扫描结论;自动填写工程质量扫描报告表, 包含每个构件的构件编号、构件类型、测试方向、设计厚度、最 大厚度、最小厚度、平均厚度、合格点数、总测点数、合格率。 如图 4-13 所示。扫描报告封面如图 4-14 所示。

报告模板:	「标准模板 *	报告编号:	2017001	
报告保存到:	临时目录 ② 数据目录 ③ 自定》	C D:\temp\A6P	736C.tmp.doc	
结构类型:	预制墙板 ▼ 强度等级:	C40 -	》 齢期(天): 30	
[程信息				
工程名称:	蓝岛大厦			
工程地址:	北京通州云景东路347号	工程编号:	BJ-T001	
委托单位:	康科瑞委托	委托编号:	C001	
委托日期:	2017/ 1/16 星期一 🛛 💌	检测编号:	3001	
检测日期:	2017/ 1/16 星期一 🛛 🔍	设计单位:	康科瑞设计	
监理单位:	康科瑞监理	施工单位:	康科瑞建设	
剑单位信息		检测仪器与人	员信息	
检测单位:	康科瑞检测	仪器型号:	康科瑞一体钢筋	
单位地址:	北京通州云景东路347号蓝岛大厦B座1	仪器编号:	001	
单位资质:	一级	检定证号:	BJ-JD001	
联系人:	贺贺	检测人员:	贺贺	
联系电话:	010-68317925	上岗证号:	GO-001	

图 4-13 生成报告

图 4-14 扫描报告封面

打印功能,首先进行打印设置,然后可以在打印预览后再打 印当前客户区显示的图形,如图 4-15 所示。也可以把当前客户 区显示的图形快速打印出来。

图 4-15 打印预览

4.3 显示方式

图 4-16 显示方式

4.3.1 平面显示

根据不同的测试方式会显示不同的内容。坐标是根据最大距离或最大厚度值自动来确定的, 所以在不同的构件中坐标的标签是不相同的。

JGJ 测试或单点测试只有厚度坐标,而没有 X 与 Y 方向的距离坐标,每根钢筋以圆点显示, 显示每根钢筋的厚度信息,可选择在钢筋下方显 示或不显示厚度值,如图 4-17 所示。

图 4-17 JGJ 扫描数据

剖面扫描显示 X 方向距离坐标与厚度坐标, 每根钢筋以圆点显示,可选择在钢筋下方显示或 不显示厚度值,也可选择显示或不显示钢筋之间 的间距,间距比较小时自动隐去,如图 4-18 所 示。

网格扫描显示 X 与 Y 方向的距离坐标,每根 钢筋以直线显示,也可选择显示或不显示厚度值 与间距值,如图 4-19 所示。

精细扫描显示 X 方向距离坐标与厚度坐标, 基本上与剖面扫描相同,每根钢筋以直线显示, 可选择在钢筋下方显示或不显示厚度值,也可选 择显示或不显示钢筋之间的间距,间距比较小时 自动隐去,如图 4-20 所示。

图像扫描显示 X 与 Y 方向的距离坐标,每根 钢筋以圆点显示,如图 4-21 所示。由于图像扫

描设置了 5X5 网格,每根钢

图 4-21 图像扫描数据

筋相当于重复扫描了5次,软件自动对一定距离 误差范围与厚度误差范围内的钢筋做线性回归 处理。线性回归化后的钢筋以直线显示,可能不 是水平或垂直与X方向,也可能会产生错误的钢 筋数据,仅供参考。

4.3.2 立体显示

根据 X 与 Y 方向的距离与 Z 轴的厚度值来显示立体图示, XY 平面相当于测试面, Z 轴是测试体内部。可通过平移、旋转、缩放来观察更多细节, 如图 4-22 所示。

JGJ 扫描与单点测试无距离信息时则平均显示在 X 方向上;图像扫描时只显示线性回归化的钢筋示意,Z 轴厚度也是线性回归化的值,可能不与 XY 平面平行。

图 4-22 立体图示

4.3.3 波形显示

根据钢筋数据的附加文件显示X与Y方向的 波形(如果有波形数据的话,在JGJ扫描时没有 附加的波形文件)。一体式钢筋扫描仪其化的扫 描方式均附加了波形文件,特别是图像扫描时, 5X5网格均扫描时将会附加最多10条波形;根 据不同的扫描方式,可选择显示或不显示厚度值 与间距值。

图 4-23 波形显示